PAMS Technical Documentation RAE-2 Series PDA

Chapter 5 BS1 PDA Module

Section 02/99 Copyright © 1999. Nokia Mobile Phones. All Rights Reserved.

Amendment Number		Inserted By	Comments
	02/99	OJuntune	Original

BS1

CONTENTS – PDA module BS1

Page No

Introduction	5 – 4
Technical Summary	5 – 4
Electronics	5 – 5
Interconnection Diagram	5 – 6
DC Characteristics	5 – 7
AC Characteristics	5 – 8
External Signals and Connections	5 – 8
UI flex connector	5 – 9
Board to board connector signals	5 – 12
System connector pads	5 – 16
Audio connector pads	5 – 17
Backup battery	5 – 17
Internal Signals and Connections	5 – 18
Functional Description	5 – 20
Power Unit	5 – 20
Input filter	5 – 21
Linear regulator V28	5 – 21
Linear regulator V28_1,_2,_3	5 – 21
Switchmode regulator V17	5 – 21
Backup battery	5 – 21
Reset and power management	5 – 22
PDA CPU	5 – 22
I/O Signals	5 – 24
Memories	5 – 25
DRAM memory	5 – 25
Flash memory	5 – 25
External Serial Interface	5 – 26
IR-Transceiver	5 – 26
Handsfree loudspeaker	5 – 26
Keyboard	5 – 26
Test pads	5 – 28
Testpoints	5 – 30

Introduction

The function of the BS1 PDA module in RAE–2 Communicator device is to run all applications that utilize the PDA LCD display of the device. The GEOS operating system is applied on a 486 based PDA module platform. This processing platform utilizes the communicator–type user interface which is accessible when the RAE–2 is opened.

Technical Summary

The BS1 PDA module consists of a printed circuit board with a CPU, two kinds of memories, a Power unit, HF amplifier circuitry, and an IR-transceiver.

The PDA module is assembled on a single 8–layer printed circuit board. All components are assembled on one single side. The other side is reserved for keyboard keypads.

Serial ports, DMA– and LCD controller for timers are integrated in the CPU. The operating system is GEOS supplied by Geoworks.

The BS1 module includes three non–volatile Flash memories which are used for two kind of purposes. XIP (executed in place) memory is used for program file storage and RFD (resident flash disk) memory is writeable for user data.

One DRAM Memory is used for the code execution and for the volatile storage of the internal run–time system data.

Both memory types (DRAM and Flash) have their own address– and data bus, routed directly from the CPU.

Memory type	Amount (Bytes)
Flash (XIP)	4M
Flash (RFD)	2M
DRAM	2M

The BS1 PWRU block regulates the PDA module power and controls the power-up and -down. After a battery has been connected, the PWRU gives the CPU system voltage and releases the reset as fast as possible after which the CPU SW has full power management control. The PWRU also generates and controls the voltages that the PDA LCD uses. The PDA has a rechargeable back–up battery which the PWRU block charges when the main battery is connected. The VBACK voltage is normally always available for real time clock. Power is fed from the battery through the CMT module to the PDA PWRU. The PWRU has a filter in battery line to reduce interference from the CMT module. The PWRU provides

A/D converter readings of the battery voltage and temperature via a parallel interface to the CPU. Many PWRU items can be controlled by register writing or directly via pin. The system voltage is always present until battery voltage drops below 3.0V.

Electronics

The following sections of circuitry are included on the BS1:

Function
PWRU Power supply unit
PDA CPU
IR transceiver
DRAM memory
Flash memory
HF Amplifier
QWERTY Keyboard pads

BS1

Interconnection Diagram

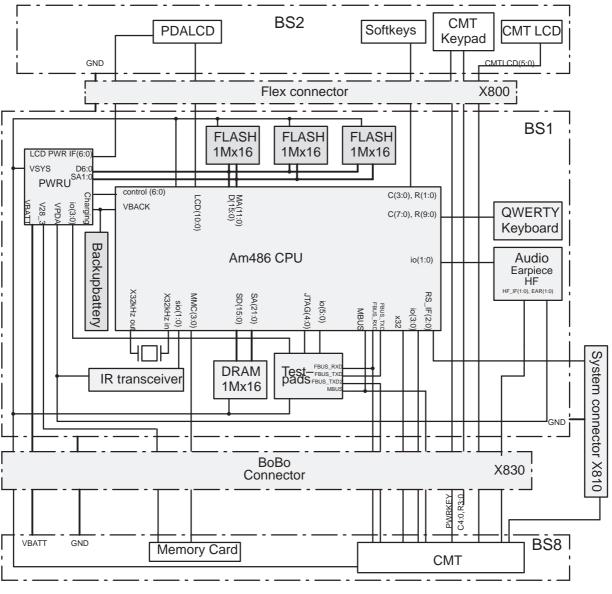


Figure 1. BS 1 PDA block in RAE–2 product NOTE: All modules have same ground.

DC Characteristics

Pin / Conn.	Line Symbol	Minimum	Nominal	Maximum	Unit	Notes
1,2,3,4,5/ X830	VBATT	3.0	3.6	4.1	VDC	Battery voltage, SW limit
1,2,3,4,5/ X830				900	mA	Current
E307	VBACK	2.4	3.0	3.15	VDC	Backup battery voltage
		0.4	0.5	0.7	mA	Charge current
			0.25	0.4	mA	Quiescent current in suspend mode
E312	VSYS	2.75	2.8	2.85	VDC	System voltage
		0.050	300	450	mA	Current
E300	V17_OUT	17.1	19.4	21.6	VDC	LCD Biasing volt- age, NOTE1
		19.0	19.8	20.6	VDC	LCD Biasing volt- age, at +20C
			2	5	mA	Current
7/X800	V17_i1	15.8	17.9	19.9	VDC	LCD intermediate voltage1 (12/13xV17_OUT). NOTE1
		17.5	18.3	19.0	VDC	at +20C
				4	mA	Current
8/X800 V17_i2	V17_i2	14.4	16.4	18.3	VDC	LCD intermediate voltage2 (11/13xV17_OUT). NOTE1
		16.1	16.8	17.4	VDC	at +20C
				4	mA	Current
9/X800	V17_i3	2.6	3.0	3.3	VDC	LCD intermediate voltage3 (2/13xV17_OUT). Max range
		2.9	3.0	3.2	VDC	at +20C
				4	mA	Current
10/X800	V17_i4	1.3	1.5	1.7	VDC	LCD intermediate voltage4 (1/13xV17_OUT). NOTE1
		1.4	1.5	1.6	VDC	at +20C
				4	mA	Current

Table 2. Supply Voltages and Power Consumption

RAE–2	
-------	--

BS1

Pin / Conn.	Line Symbol	Minimum	Nominal	Maximum	Unit	Notes
3/X800	V28_1	2.70	2.80	2.85	VDC	LCD Logic volt- age
			1	4	mA	Current
21/N450	V28_2	2.70	2.8	2.85	VDC	IrDA Logic volt- age
			2	4	mA	Current
46/X830	V28_3	2.75	2.8	2.85	VDC	MMC supply volt- age
		0.01	50	100	mA	Current
16/X830	VBB	2.75	2.8	2.85	VDC	Base Band oper- ating voltage
					mA	Current

 Table 2. Supply Voltages and Power Consumption (continued)

NOTE : Complete temperature range

AC Characteristics

	Minimum	Nominal	Maximum	Unit / Notes
External XTAL		32.768		kHz
			20	ppm, accuracy
CPU clock		33.18		MHz, Rise time 1–2ns
Memory bus clock		33.18		MHz, Rise time 2–3ns
Memory Controller clock		66.3552		MHz, Rise time 1–2ns
MMC clock during data	0.2592		8.294	Mhz, Rise time 2–3ns, NOTE1
MMC clock during identifica- tion		259.2		kHz, Rise time 2–3ns

NOTE: Frequency is a multiple of 259.2kHz

External Signals and Connections

This section describes the external electrical connection and interface levels on BS1 module. The electrical interface specifications are collected into tables that cover each connector and defined interface.

Connector Name	Code	Notes
UI flex connector	X800	CMT/PDA LCD- and Keyboard signals
Board to Board connector	X830	CMT PDA interface
System connector pads	X810	

BS1

Connector Name	Code	Notes
Audio connector pads	E880, E881, E850, E851	HF–speaker connection and earpiece connection
Backup battery holder	X451	
Testpads	E300–E315	Testpads "under" battery pack
Frame connector pads	X840	Include manufacturing testpads. Is removed before assembly
Testpoints	J310, J400–J404, J430, J434, J435, J440 – J456, J497 – J499, J801, J803, J804, J808, J854, J880, J881	Testpoints around the BS1 PCB.

Table 3. List of Connectors and testpoints	(continued)
--	-------------

UI flex connector

The Interface between the BS2 and BS1 modules comprises a 51–pin flex connector. The connector includes supply voltage for the BS2 module, and required information signals. Signals from the BS8 module are also carried via the flex connector.

Pin	I/O	Name	Function	Min	Nom	Мах	Unit	Description / Note
1		GND	Global Ground					
2	I	LCD_TEMP	PDA LCD Temperature	0.2	0.9	2.5	VDC	Voltage range throught the whole temperature range.
				0.2	0.9	0.91	VDC	At +25°C
3	0	V28_1	PDA LCD Logic voltage	2.70	2.80	2.85	VDC	
4	0	LCD_ON	PDA LCD enable	2.30	2.8	2.85	VDC	High
					0	0.4	VDC	Low
5	0	V17_OUT	PDA LCD Biasing voltage	19.0	19.8	20.6	VDC	Range at +20C. Whole range can be seen from table2
6		GND	Global Ground					
7	0	V17_i1	PDA LCD Intermediate bias	17.5	18.3	19.0	VDC	Range at +20C.
8	0	V17_i2	voltage	16.1	16.8	17.4	VDC	Whole range can be seen from
9	0	V17_i3]	2.9	3.0	3.2	VDC	table2
10	0	V17_i4]	1.4	1.5	1.6	VDC	
11		GND	Global Ground					

Table 4. UI flex Connector X800

			e 4. Of fiex confidential		(linueu	, ,	
Pin	I/O	Name	Function	Min	Nom	Мах	Unit	Description / Note
12	0	FRM	PDA LCD Frame pulse	2.30	2.80	2.85	VDC	High
					0	0.45	VDC	Low
					72	100	Hz	
							%	Duty cycle
13	0	Μ	PDA LCD AC Modulation	2.30	2.80	2.85	VDC	High
					0	0.45	VDC	Low
					2.5	3.4	kHz	
14		GND	Global Ground					
15	0	LC	PDA LCD Line pulse	2.30	2.80	2.85	VDC	High
					0	0.45	VDC	Low
					32	44.5	kHz	
16		GND	Global Ground			•		
17	0	SCK	PDA LCD bus clock	2.30	2.80	2.85	VDC	High
					0	0.45	VDC	Low
					2.3	3.2	MHz	
18		GND	Global Ground		1	1	1	
19	0	LCDD0	PDA LCD Data signal	2.30	2.80	2.85	VDC	High
					0	0.45	VDC	Low
20	0	LCDD1	PDA LCD Data signal	2.30	2.80	2.85	VDC	High
			Ŭ		0	0.45	VDC	Low
21		GND	Global Ground		I	I		
22	0	LCDD2	PDA LCD Data signal	2.30	2.80	2.85	VDC	High
					0	0.45	VDC	Low
23	0	LCDD3	PDA LCD Data signal	2.30	2.80	2.85	VDC	High
	Ŭ	20220	1 DA LOD Data olghai		0	0.45	VDC	Low
24	0	PDA_BL_ON	PDA LCD Backlight enabled	2.30	2.80	2.85	VDC	High, backlight en- abled
					0	0.45	VDC	Low
25	0	CMT_BL_ON	CMT Backlight enabled	2.1	2.80	2.85	VDC	High, backlight en- abled
					0	0.5	VDC	Low
26	Т	ROW3	CMT Keys Row3, Lid closed,	2.1	2.80	2.85	VDC	High
			Base band powered		0	0.5	VDC	Low
27	I	ROW2	CMT Keys Row2, Lid closed,	2.1	2.80	2.85	VDC	High
			Base band powered		0	0.5	VDC	Low
28	Т	ROW1	CMT Keys Row1, Lid closed,	2.1	2.80	2.85	VDC	High
			Base band powered		0	0.5	VDC	Low
29	Т	ROW0	CMT Keys Row0, Lid closed,	2.1	2.80	2.85	VDC	High
			Base band powered		0	0.5	VDC	Low
30	0	COL4	CMT Keys Col4	2.1	2.80	2.85	VDC	High
					0	0.5	VDC	Low
31	0	COL3	CMT Keys Col3	2.1	2.80	2.85	VDC	High
					0	0.5	VDC	Low

 Table 4. UI flex Connector X800 (continued)

BS1

	Table 4. Of flex Connector X800 (continued)									
Pin	I/O	Name	Function	Min	Nom	Max	Unit	Description / Note		
32	0	COL2	CMT Keys Col2	2.1	2.80	2.85	VDC	High		
					0	0.5	VDC	Low		
33	0	COL1	CMT Keys Col1	2.1	2.80	2.85	VDC	High		
					0	0.5	VDC	Low		
34	0	COL0	CMT Keys Col0	2.1	2.80	2.8	VDC	High		
					0	0.5	VDC	Low		
35	Т	APP_ROW1	PDA Application row1	2.0	2.80	2.85	VDC	High		
					0	0.8	VDC	Low		
36	Т	APP_ROW0	PDA Application row0	2.0	2.80	2.85	VDC	High		
					0	0.8	VDC	Low		
37	0	APP_COL3	PDA Application col3	2.3	2.80	2.85	VDC	High		
					0	0.45	VDC	Low		
38	0	APP_COL2	PDA Application col2	2.3	2.80	2.85	VDC	High		
					0	0.45	VDC	Low		
39	0	APP_COL1	PDA Application col1	2.3	2.80	2.85	VDC	High		
					0	0.45	VDC	Low		
40	0	APP_COL0	PDA Application col0	2.3	2.80	2.85	VDC	High		
					0	0.45	VDC	Low		
41	0	LCDCD	CMT LCD driver command/	2.1	2.80	2.85	VDC	High, data		
			data selection		0	0.5	VDC	Low, command		
42	0	LCDSCx	CMT LCD driver chip select	2.1	2.80	2.85	VDC	High		
					0	0.5	VDC	Low, chip selected		
43		GND	Global Ground							
44	0	GENSCLK	CMT LCD driver bus clock	2.1	2.80	2.85	VDC	High		
					0	0.5	VDC	Low		
						4.0	MHz			
45		GND	Global Ground							
46	0	GENSDIO	CMT LCD driver serial data	2.1	2.80	2.85	VDC	High		
					0	0.5	VDC	Low		
						4.0	MHz			
47		GND	Global Ground		•					
48	0	LCDRST	CMT LCD Reset	2.1	2.80	2.85	VDC	High		
					0	0.5	VDC	Low		
49		VBB		2.7	2.8	2.85	VDC			
50	I	PWRKEY	CMT Power switch	2.1	2.80	2.85	VDC	Inactive state		
					0	0.45	VDC	L(Pulse)=Power on/off, min 64ms		
51		VPDA	Filtered battery voltage from	3.0	3.6	4.1	V			
			PDA		0		mA	PDA and CMT backlights off		
				40		65	mA	PDA LCD back- light ON		
				10		20	mA	PDA LCD back- light OFF		

Table 4	. UI flex	Connector	X800	(continued)
---------	-----------	-----------	------	-------------

Board to board connector signals

All interfaces from the BS8 module to the BS1 module are fed over a 50–pin board-to-board connector.

The function of the Interface is to transfer the battery voltage from the BS8 module, and transfer data between the BS8, BS2, and BS1 modules.

The signal definition and the most significant specifications of signals are collected in the next table.

Pin	I/O	Name	Function	Min	Nom	Мах	Unit	Description / Note
1		VBATT	Battery Positive	3.0	3.6	4.1	V	Unregulated Bat- tery Voltage
2				0.3		1000	mA	Current from BS8 module
3								module
4								
5								
6	I	XEAR	Audio Output for Handsfree and Car Kit Use			500	mVpp	
7		GND	Global Ground					Reference for oth- er signals
8	Т	BATTDET	Battery Position Information	2.0	2.80	2.85	VDC	
				0	0	0.8	VDC	
9	Т	HFENA	Internal Handsfree Amplifier Control	2.1	2.80	2.85	VDC	High, HF amplifier enabled
					0	0.5	VDC	Low, HF amplifier disabled
10		EARP	Earpiece Positive	50		223	mVpp	Differential signal
11		EARN	Earpiece Negative					
12		GND	Global Ground					
13	0	O PWRONx	PDA start baseband to ser- vice Request State (SRS)	2.30	2.8	2.85	VDC	High
			Vice Request State (SRS)		0	0.45	VDC	Low, powering up the CMT
14	0	32kHz	Sleep clock for the CMT	2.30	2.8	2.85	VDC	high
					0	0.45	VDC	low
						12	mA	Maximum current for PDA
					32768		Hz	Pulse frequency
				20	50	80	%	Duty cycle
						1	%	Jitter
15		GND	Global Ground					
16		VBB	CMT System Power	2.7	2.8	2.85	VDC	Regulated CMT baseband voltage
						1	mA	Maximum current
17	0	PWRKEYx	CMT Power Switch	2.0	2.80	2.85	VDC	Inactive state
					0	0.45	VDC	L(Pulse)=Power on/off, min. 64ms

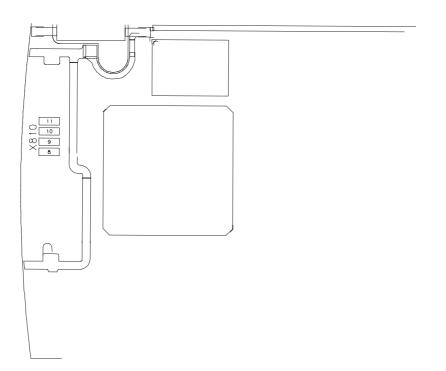
 Table 5. Board to board connector X830

Dim	I/O Name Function Min Nom Max Unit				Nam	Mari	Unit	Description
Pin	1/0	Name	Function	IVIIN	NOM	Max	Unit	Description / Note
18	I	CMT_BL_ON	CMT UI Light On	2.1	2.8	2.85	VDC	High, backlight en- abled
					0	0.5	VDC	Low
19	0	ROW3	CMT Keys Row 3	2.5	2.8	2.85	VDC	High
					0	0.2	VDC	Low
20	0	ROW2	CMT Keys Row 2	2.5	2.8	2.85	VDC	High
					0	0.2	VDC	Low
21	0	ROW1	CMT Keys Row 1	2.5	2.8	2.85	VDC	High
					0	0.2	VDC	Low
22	0	ROW0	CMT Keys Row 0	2.5	2.8	2.85	VDC	High
					0	0.2	VDC	Low
23		GND	Global Ground					
24	Т	COL4	CMT Keys Column 4	2.1	2.80	2.85	VDC	High
					0	0.5	VDC	Low
25	Т	COL3	CMT Keys Column 3	2.1	2.80	2.85	VDC	High
					0	0.5	VDC	Low
26	Т	COL2	CMT Keys Column 2	2.1	2.80	2.85	VDC	High
					0	0.5	VDC	Low
27	Т	COL1	CMT Keys Column 1	2.1	2.80	2.85	VDC	High
					0	0.5	VDC	Low
28	Т	COL0	CMT Keys Column 0	2.1	2.80	2.85	VDC	High
					0	0.5	VDC	Low
29		GND	Global Ground		•		•	
30	I	LCDCD	CMT LCD Command / Data	2.1	2.80	2.85	VDC	High, data
			Select		0	0.5	VDC	Low, command
31	Т	LCDRSTx	CMT LCD Reset	2.1	2.80	2.85	VDC	High
					0	0.5	VDC	Low, LCD reset
32	I	LCDCSx	CMT LCD Chip Select	2.1	2.80	2.85	VDC	High
					0	0.5	VDC	Low, chip selected
33		GND	Global Ground		•			
34	Т	GENSCLK	CMT LCD and CCONT Serial	2.1	2.80	2.85	VDC	High
			Clock		0	0.5	VDC	Low
					3.250		MHz	Pulse frequency in active state
35	Ι	GENSDIO	CMT LCD and CCONT Serial	2.1	2.80	2.85	VDC	High
			Data		0	0.5	VDC	Low
					1.625		MHz	Maximum pulse frequency
36		GND	Global Ground					
37	0	FBUS_RXD	Fast Serial Data to CMT	2.30	2.80	2.85	VDC	High
					0	0.45	VDC	Low
38	I	FBUS_TXD	Fast Serial Data to PDA	2.1	2.80	2.85	VDC	High
					0	0.5	VDC	Low

 Table 5. Board to board connector X830 (continued)

	Table 5. Board to board connector X830						(continued)		
Pin	I/O	Name	Function	Min	Nom	Мах	Unit	Description / Note	
39		GND	Global Ground			_			
40	I/O	MBUS	Bidirectional Serial Bus	2.30	2.80	2.85	VDC	High, to the CMT	
					0	0.45	VDC	Low, to the CMT	
				2.1	2.80	2.85	VDC	High, from the CMT	
					0	0.5	VDC	Low, from the CMT	
41		VSYS	PDA System voltage	2.75	2.80	2.85	VDC		
						2	mA		
42	0	LIDSWITCH	Lid State Information	2.75	2.80	2.85	VDC	High, Cover open	
					0		VDC	Low, Cover closed	
					10		kohm.	Pull–up resistor	
43	I	MMC_SWITCH	MMC Cover State Information	2.75	2.80	2.85	VDC	High, Cover open	
					0		VDC	Low, Cover closed	
44		GND	Global ground		•		•		
45 I/O	I/O MMC_CMD	MMC Command / Address / Response, Bidirectional	2.30	2.80	2.85	VDC	Data to the card High, Pulled up with 10kohm resis- tor to MMC_VSYS in CMT Module		
				0	0.45	VDC	Data to the Card Low		
				2.1	2.80	2.85	VDC	data from the card High, Pulled up with 10kohm resis- tor to MMC_VSYS in CMT Module	
						0.34	VDC	Data from the card Low	
					259.3		kHz	frequency	
46		MMC_VSYS	MMC Power Supply	2.75		2.85	VDC		
				0.01		100	mA	Current	
47	I/O	MMC_DATA	MMC Bidirectional Data	2.30	2.80	2.85	VDC	Data to the Card High, Pulled up with 10kohm resis- tor to MMC_VSYS in CMT Module	
					0	0.45	VDC	Data to the card Low	
				2.1	2.80	2.85	VDC	Data from the Card High, Pulled up with 10kohm resistor to MMC_VSYS in CMT Module	
					0	0.34	VDC	Data from the card Low	
					8.294		MHz	frequency	
48		GND	Global ground						

Table 5. Board to board connector X830 (continued)


BS1

Pin	I/O	Name	Function	Min	Nom	Мах	Unit	Description / Note
49	0	MMC_CLK	MMC Clock	2.30	2.80	2.85	VDC	High
					0	0.45	VDC	Low
				0.2592		8.294	MHz	Frequency
50		GND	Global Ground					

 Table 5. Board to board connector X830 (continued)

System connector pads

The RAE–2 System connector is a multipurpose connector, which is shared with the BS8 module. In this section are described only the signals that are connected to the BS1 module. These signals are needed for PC–connectivity. The connector comprises spring type contacts to the BS1 and BS8 module. The PCB comprises pads on which the springs are pressed.

Table 6. Sys	stem Connector	pads	X810
--------------	----------------	------	------

Pin	Line Symbol	Parameter	Minimum	Nominal	Maximum	Unit	Unit / Notes
8	DCT_TX	PDA CPU Receive	2.0	2.80	2.85	VDC	
		data	0		0.8	VDC	
9	DCE_RX	PDA CPU Transmit	2.30	2.80	2.85	VDC	
		data	0		0.45	VDC	
10	DCE_DTR	PDA CPU Data set	2.0	2.80	2.85	VDC	
		ready	0		0.8	VDC	
11	GND	Global ground					

Audio connector pads

The audio connector has two contact types. The earpiece contacts are of spring type, and the contacts for the handsfree speaker are elastomeric contacts.

Pin	Line Symbol	Parameter	Minimum	Nominal	Maximum	Unit	Unit / Notes
E850	EARP	Earpiece positive node	50		223	mVpp	Differential voltage between EARP and EARN nodes
E851	EARN	Earpiece negative node					
E880	PHFEARN	Handsfree speaker negative node			6.0	Vpp	VBATT=4.4V. Differential volt- age between PHFEARN and PHFEARP nodes
					4.4	Vpp	VBATT=3.6V. Differential volt- age between PHFEARN and PHFEARP nodes
E881	PHFEARP	Handsfree speaker positive node			6.0	Vpp	VBATT=4.4V. Differential volt- age between PHFEARN and PHFEARP nodes
					4.4	Vpp	VBATT=3.6VBATT=4.4V. Dif- ferential voltage between PHFEARN and PHFEARP nodes.

Table 7. Audio connector pads

Backup battery

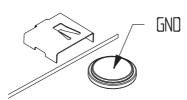


Figure 2. Backup battery insertion direction

NOTE: Positive node is against PCB, it can be identified by 2mm diameter contact plate

 Table 8. Backup battery holder X450

Pi	in	Name Function		Min	Nom	Мах	Unit	Description / Note
		VBACK	Backup battery voltage	2.4	3.0	3.1	VDC	
	GND Global ground		Global ground					

Internal Signals and Connections

Pin	Line Symbol	Parameter	Minimum	Nominal	Maximum	Unit / Notes
3	TXD	Transmit data from CPU	2.30V	2.80V	2.85V	
				0V	0.45V	
4	RXD	Receive data to CPU	2.0V	2.8V	2.85V	
				0	0.8V	

Table 9. IR-transceiver (N300) signals

Table 10. Signals between PDA CPU and Flash memories

Name	Function	Min	Nom	Max	Unit	Description / Note
SA(21:1)	System address	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low
SD(15:0)	System data from CPU	2.30	2.8	2.85	VDC	High
			0	0.4	VDC	Low
	System data from memory	2.40	2.8	2.85	VDC	High
			0	0.4	VDC	Low
ROMCS(2:0)	Chip selects for Flash memo-	2.30	2.80	2.85	VDC	High
	ries		0	0.4	VDC	Low
FLSHWRx	Flash write signal	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low, write enabled
ROMRDx	Flash read signal	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low, read enabled
GPIO_CS1	Write protect for RFD memory	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low, powered down
GPIO_CS7	RFD Flash ready	2.0	2.80	2.85	VDC	High, ready
			0	0.8	VDC	Low, busy

Table 11. Signals between PDA CPU and DRAM Memory

Name	Function	Min	Nom	Мах	Unit	Description / Note
MA(11:0)	Memory address	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low
SD(15:0)	Memory data from CPU	2.30	2.8	2.85	VDC	High
		0	0	0.4	VDC	Low
	Memory data from memory		2.8	2.85	VDC	High
		0	0	0.6	VDC	Low
RAS0	Row access strobe	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low
CAS(1:0)	Column access strobe	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low
MWEx	Memory write enable	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low, write enabled

BS1

Name	Function	Min	Nom	Max	Unit	Description / Note
SA(2:0)	System address	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low
SD(6:0)	System data	2.40	2.8	2.85	VDC	High
			0	0.4	VDC	Low
CS3x	Chip select for Phaser	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low
IOWx	Phaser write signal	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low, write enabled
IORx	Phaser read signal	2.30	0 2.80 2.85 VDC High		High	
			0	0.4	VDC	Low, read enabled
RESETx	Reset for CPU, and for Flash	2.30	2.80	2.85	VDC	High
	memories.		0	0.4	VDC	Low
VBACK	Back-up battery voltage	2.40	3.0	3.1	VDC	High
V17_EN	LCD bias voltage enable	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low
V28_1EN	LCD logic voltage enable	2.30	2.80	2.85	VDC	High
			0	0.4	VDC	Low

Table 12. Signals between PDA CPU and PWRU

Functional Description

Power Unit

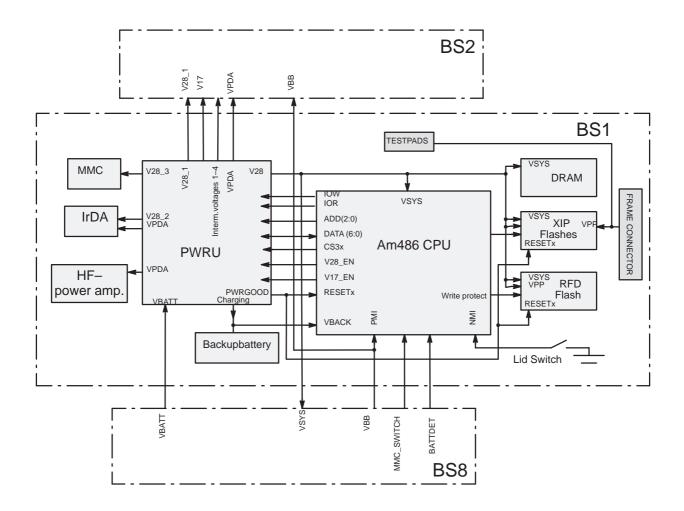


Figure 3. PDA Power distribution diagram

Battery voltage is supplied from the BS8 module through a board to board connector. In the BS1 module the battery voltage is filtered and then supplied to the Phaser, IR-transceiver circuit, BS2 module, and PHF-speaker circuitry.

The phaser generates internally the system voltage V28, switched voltages V28_1,V28_2, V28_3, the LCD bias voltage V17, the LCD intermediate voltages V17_ix, x=1-4 and the backup battery charging voltage VBACK.

When the battery voltage level is adequate, the PWRU switches V28 on and after a certain time releases the reset–signal for the CPU. The CPU

controls the LCD, MMC, and IR-transceiver logic voltages by writing command to the PWRU register. Optionally the CPU can control the LCD logic- and biasing voltage directly by means of I/O signals.

The backup battery supplies power to the CPU's real time clock. The PWRU charges the backup battery when the main battery is connected. The CPU puts the Flash memories to power down mode when they are not used.

The BS8 signal BATTDET is a warning signal that the battery will be removed soon, when power down procedure is started. VBB is the supply voltage for the CMT display, located in the BS2 module, and the VBB provides information for the BS1 CPU whether the CMT powered or not and it enables the keyboard buffer. The MMC_SWITCH indicates that the MMC card will be removed, when the CPU controls the Phaser to turn the V28_3 off.

Input filter

The Battery voltage is fed from the BS8 module and then filtered by using a LC–lowpass filter, after filtering the voltage is named VPDA. The VPDA is then fed to the PWRU, the IR–transceiver, the PHF–speaker circuitry, and to the BS2 module.

Linear regulator V28

System voltage V28 is generated by a linear regulator. V28 stays on all the time when the battery voltage is higher than cutoff limit.

Linear regulator V28_1,_2,_3

These regulators are controlled by the CPU. The CPU can enable these regulators by writing a command to the PWRU's register. V28_1 is the switched V28 and is used for the LCD logic. V28_2 is the switched V28 and is used for the IRDA logic. V28_3 is the MMC voltage.

Switchmode regulator V17

The LCD bias voltage V17 is generated by a step–up DC–DC converter. The control scheme is the current limited pulse width modulation (PWM). The switching transistor is internal. The regulator output, too, is separated from the battery line by an integrated switch transistor between the regulator output and load.

Backup battery

The Real time clock is kept running by a backup battery only when the main battery is not connected. At the nominal RTC load used , the 12mAh capacity of the backup battery provides about 40 days of RTC operation when the main battery is not connected. The backup battery is

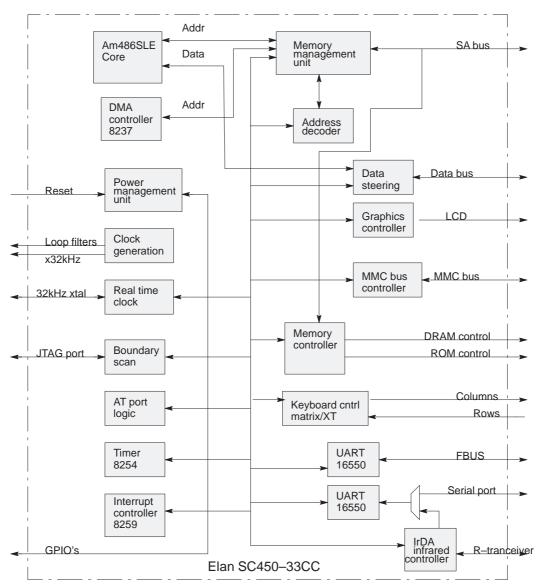
rechargeable. It is charged by the Phaser VBACK regulator using 0.5mA current when the main battery is connected.

Reset and power management

The Phaser is connected to the I/O space of the H3 by using a 7 bit wide data bus and a 3 bit wide address bus. The BS2 PDAPWRU on the PDA board supplies two different voltage levels to the system; 2.85V is used as the main operating voltage for all circuits and about 19V that is needed for the LCD bias (V17). The LCD bias voltage is used to adjust the contrast ratio of the LCD screen. The LCD bias voltage is controlled by the Phaser ASIC.

The V17 and V28_1 ON/OFF are switched by the Phaser, but optionally also the CPU can control these signals directly with HW means, independently of the SW controlled register settings. The phaser provides also the POWERGOOD signal for the CPU. The system reset circuit is part of the power supply. When the battery voltage is higher than 3.4V a PWRGOOD is generated for the CPU. The reset circuit also asserts the reset signal whenever the Vcc supply voltage declines below the threshold, keeping it asserted for at least 50ms after Vcc has risen above the reset threshold. The reset circuit is designed to ignore fast transients (t < 64μ s) in Vcc.

There is an undervoltage lockout (UVLO) block inside the Phaser. Below the threshold limit the comparator shuts down all Phaser functionality to prevent the battery from overdischarge. Otherwise the VSYS regulator current drains the battery when left unused for long period. After the UVLO there is only reference block in the Phaser drawing current from the battery. The UVLO has a little hysteresis and is cancelled when the battery voltage has risen to 2.7V. However, reset to the CPU is given only when battery voltage rises to 3.45V. This in order to avoid unsuccessful power–ups. When the lockout voltage level is reached, the battery voltage rises because the load is removed.


PDA CPU

The PDA CPU is a SC450–33CC in a 256 pin plastic ball grid array package.

The core features a 32-bit architecture with internal 8k write-back cache. The clock rate is 33MHz, which can be slowed down to1MHz. The default clock rate on reset is 8.29MHz. The bus clock rate is 33MHz. A 32kHz clock signal for the BS8 module is provided by the CPU PLL circuit. The clock signal is started when ever the system voltage is applied to the CPU.

The CORE starts when the reset signal is provided and then it begins to execute the program code from the Flash memory. The external pull–up resistor controls the start–up procedure (Boot code Chip select, and data bus width).

The memory controllers are integrated to the chip. A ROM controller is used for Flash interface and a DRAM controller supports extended data out (EDO) page mode DRAMs. Both memory types (DRAM and Flash) have their own address and data bus routed directly to the CPU. The power unit is controlled via an I/O-mapped 7-bit wide data- and 3-bit wide address bus, which is shared with Flash data- and address bus. The CPU block diagram is the figure below.

For serial interface two UART circuits are used. UART2 is a serial interface reserved for data transfer between the BS1 and BS8 modules. UART2 is disabled or enabled according to the CMT voltage. UART1 is used for RS–232 interface with external level changer. The UARTs can be connected together to establish Re–Link connection, where received data is directly linked to the UART's transmit data pin. That way the BS8 module can be programmed by using an external RS-interface. Autobauding detection circuitry is included in the UART1 block. The LCD–controller supports a 4-bit data and 16-grey shades. The display control signals are routed from the CPU. The bigger (640x200) LCD is located in the lid. The interconnection between the CPU and the LCD comprises a flex through the hinge. Data and control signals are provided by the CPU. The required voltages are supplied by the PWRU.

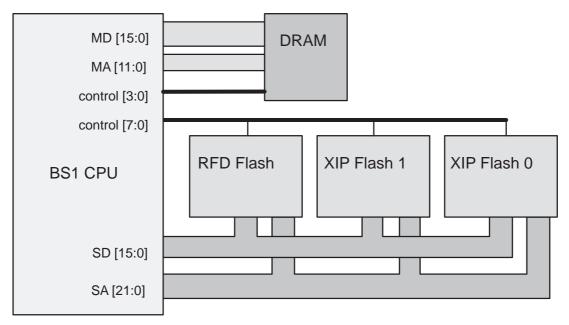
The PDA CPU supports a synchronous serial interface that is compatible with the Multimedia Card Bus (MMC) Protocol. The MMC is changeable Flash or ROM memory card with variable memory size. The MMC connector is located on the BS8 Module. MMC signals are routed to the BS8 module through a Board to board connector. The interface consists of three pins: one clock(output), one command/response (bidirectional), and one data pin (bidirectional). The controller is capable up to 8Mbits/second transfer rate.

The keyboard controller includes a matrix keyboard which is used for PDA keyboard and for PDA lid keys. The PC/AT standard core includes a 8254 programmable interval timer, two 8259 programmable interrupt controllers, and a real time clock. The CPU's general purpose input/outputs (GPIO) are controlled by the CPU's registers.

I/O Signals

In the Table 13 below are listed BS1 module I/O signals which are mapped to general purpose pins of the CPU.

Scotty Pin	Signal Name	Low	High	Note
GPIO_CS1	RFD_WPx	Write operation	Write not possible	
GPIO_CS2	XIP_STS	Memory busy	Memory ready	Input, CS(1:0) Flash memory status
GPIO_CS5	TESTMODEx	Testmode acti- vated	Reset, Suspend, Operation	Input.
GPIO_CS6	PWRONx	Powering the CMT up	Reset, Suspend	Activate the power on procedure for the CMT
GPIO_CS7	Flash_RDY	Flash performing an internal opera- tion	Flash ready for new command	Input. Open drain output, processor's internal pull–up is used. (Only for the RFD)
GPIO_CS8	MMC_Switch	MMC cover closed	Reset, MMC cov- er open	Input. MMC cover status indication
GPIO_CS9	MBUS			Output during BS8 Flashing from BS1 module, Input otherwise.
GPIO_CS11	Phaser_CSx	Chip Selected	Chip not selected	Output.
GPIO_CS12	VBB	CMT off	Reset, CMT on	Input.
GPIO_CS13				
GPIO16	LCDBL_EN	Reset, Suspend, BL disabled	Backlight acti- vated	Backlight EL driver controller.
GPIO18	BZR_EN	Reset, Suspend	Operation	Enables the PA.
BL1	BATTDET	Battery con- nected	Battery removed	Indicates when the battery is going to be removed. Pin has build in 15ms de- bounce
SUS/RES	LIDSWITCH	Cover closed	Cover open	STI. Indicates when the coved is open or closed


 Table 13. Spock CPU Controllable I/O Signals

LVDD	LVDD	Reset, Suspend	PDA LCD Logic voltage activated	Routed to the Phaser
LVEE	LVEE	Reset, Suspend	PDA LCD bias voltage activated	Routed to the Phaser

Table 13. Spock CPU Controllable I/O Signals (continued)

Memories

The memory units of the module are connected to the CPU via a 16–bit wide data bus. Both memory types (DRAM and Flash) have an own data– and address bus.

DRAM memory

The 1Mx16bit DRAM is connected to the CPU with a dedicated 16–bit wide data- and 12-bit wide address bus. The DRAM type used is the extended data out (EDO) DRAM with 60ns access time, and self–refresh capability. DRAM is packaged in a 5.55mmX9.10mm, 40–ball uBGA package.

When the DRAM is driven by the CPU, no wait states is needed.

Flash memory

Three 1Mx16bit Flash memory devices are used for non–volatile memory. The Flash type features a 120ns access time. The Flash is packaged in 8mmX11mm 64–ball CSP package. When the Flash is read by the CPU, 4 wait states are needed to ensure proper timing.

External Serial Interface

The UART1 External serial interface is used for PC–connectivity. The RS– connection is provided by a 3–signal interface (RXD,TXD, and DTR) which is routed to the system connector. Maximum data rate is 230.4kbps.

The re–link feature connects the UART1 and the UART2 (FBUS) internally together. This provides the signal routing from the system connector to the CMT.

The Autobaud detection circuitry can detect bit rates from 300 bps tp 115.2kbps. The autobaud state machine starts when enabled by the CPU. The bit rate measurement begins on the first negative edge of the CPU_RXD line. After detecting the start bit width, and therefore the bit rate, the remainder of the incoming data stream is sampled at this rate.

This UART is shared with the IrDA circuitry and thus only one of them can be used at a time.

IR–Transceiver

The IR-transceiver controller is shared with the UART1. Infrared data transfer is started with 9600bps and then the data rate is increased to 115.2kbps if the connected device supports higher speed. The protocol is the standard one of the Infrared Data Association. The CPU hardware implementation includes bit stuffing (when transmitting), CRC calculation, removing bit stuffing, and removing beginning of frame (when receiving).

Handsfree loudspeaker

The Handsfree speaker power amplifier circuitry is located on the BS1 module. The HF–speaker is used to produce the PDA key–click sounds, error beeps, and tunes. When the lid is opened, the loudspeaker is used as an handsfree speaker, producing key–click sound when a PDA QWERTY key is pressed, and producing tunes. The HF–speaker power amplifier can be controlled by the PDA CPU, or CMT.

Keyboard

The keyboard interface comprises 10x8 matrix lines. The QWERTY keyboard pads are located on the other side of the BS1 module board. 4x2 (2Row/4Column) matrix is routed to the lid. Four columns are multiplexed with CMT keyboard columns. Multiplexing is done by using buffer located on the BS1 module. This buffer is controlled by Baseband voltage (VBB). When the lid is closed these four columns are switched to inputs and they are not read by the CPU.

BS1

Technical Documentation

		Column						
	Col0	Col1	Col2	Col3	Col4	Col5	Col6	Col7
Row0	S730	S732	S734	S736	S331	S337		S343
Row1	S731	S733	S735	S325	S330	S336	S341	S342
Row2	S300	S318	S347	S324	S335	S311	S303	S305
Row3	S306	S307	S308	S327	S328	S310	S309	S323, S329, S334
Row4	S312	S313	S314	S332	S333	S316	S315	S317
Row5	S301	S319	S320	S321	S322	S348	S349	S302
Row6	S352	S353	S354	S338	S339	S356	S355	
Row7	S357	S358	S359	S344	S345	S361	S360	S346
Row8	S362	S363	S364	S326	S351	S365	S350	
Row9							S304, S340	

Table 14. Key	Reference	Numbers v	s. Senses	and Drives.

NOTE1: Shift pads has dedicated Sense line (ROW9), These shift pads are connected parallel

NOTE2: Grey shaded switches are located in BS2 module.

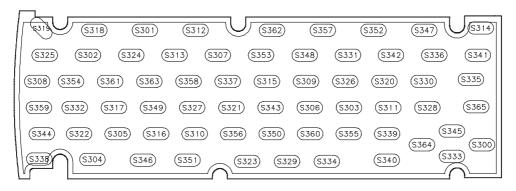


Figure 4. BS1 PDA keyboard

Test pads

Test pads are located under the battery pack. They include JTAG port which is used for After Sales Flashing purposes. The different voltages can be measured from these testpads. Serial data transfer test pads are used for data transfer between the BS1 and BS8 modules.

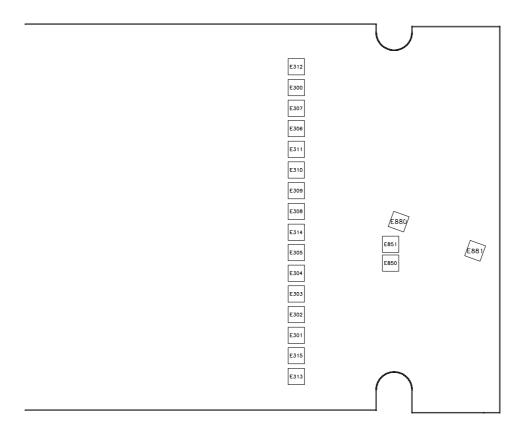


Figure 5. Test pad layout

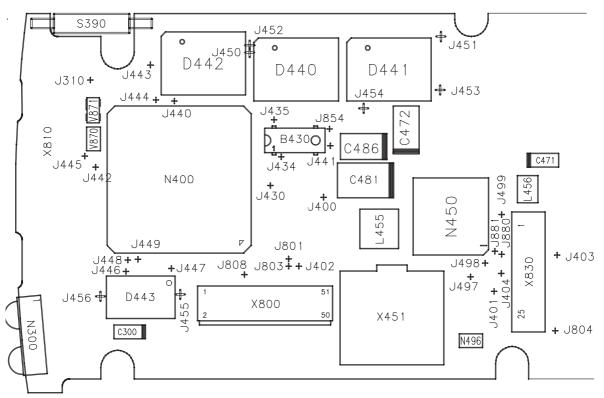

Pin	I/O	Name	Function	Min	Nom	Мах	Unit	Description / Note
E300		V17_OUT	PDA LCD Biasing voltage	13.8	19.4	22.2	VDC	High
					0		VDC	Low
E301	I	BNDSCN_TMS	Boundary scan Test mode se- lect	2.0	2.80	2.85	VDC	High, test mode selected
					0	0.8	VDC	Low
E302	I	BNDSCN_TCK	Boundary scan test clock	2.0	2.80	2.85	VDC	High
					0	0.8	VDC	Low
E303	I	BNDSCN_TDI	Boundary scan data in	2.0	2.80	2.85	VDC	High
					0	0.8	VDC	Low
E304	0	BNDSCN_TDO	Boundary scan data out	2.30	2.80	2.85	VDC	High
					0	0.45	VDC	Low
E305	I	BNDSCN_EN	Boundary scan enabled	2.0	2.80	2.85	VDC	High, boundary scan enabled
					0	0.8	VDC	Low
E306	Ι	Flash VPP	Flashing voltage for XIP Flashes.	2.75	2.80	2.85	VDC	Connected to VBATT inside the Service battery.
E307		VBACK	Backup battery voltage	2.40	3.0	3.10	VDC	High
E308	0	FBUS_RXD	PDA CPU Tx-pin	2.30	2.80	2.85	VDC	High
					0	0.45	VDC	Low
E309/	I	FBUS_TXD1,2	PDA CPU Rx-pin	2.0	2.80	2.85	VDC	High
E310					0	0.8	VDC	Low
E311	I/O	MBUS	Bidirectional Serial Bus	2.30	2.80	2.85	VDC	High, to the CMT
					0	0.45	VDC	Low, to the CMT
				2.1	2.80	2.85	VDC	High, from the CMT
					0	0.5	VDC	Low, from the CMT
E312		VSYS	System voltage	2.75	2.80	2.85	VDC	
E313		GND	Global Ground					
E314	I	FLSHWRx	Write signal for Flash memo-	2.30	2.80	2.85	VDC	High
			ries		0	0.45	VDC	Low, write en- abled
E315	I	TESTMODEx	testmode activation	2.0	2.80	2.85	VDC	High
					0	0.8	VDC	Low, testmode enabled

Table 15. Test pads

NOTE : Testpad E308 ... E310 is reserved for R&D use.

Testpoints

Testpoints are located around the PDA PCB. They include clock, control, data signals and voltages which is used for R&D, fault finding and testing purposes.

Figure 6.	Testpoints	layout
-----------	------------	--------

Table 1	6. Te	estpo	oints
---------	-------	-------	-------

Point	I/O	Name	Function	Min	Nom	Max	Unit	Description / Note
J310		LID_SWITCH_IF	Lid switch state	2.75	2.8	2.85	VDC	High, lid open
					0		VDC	Low, lid closed
J400		33MHz	CPU core clock	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low
J401	0	X32_CLK	CMT sleep clock	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low
J402	I	VBB	CMT baseband voltage	2.7	2.80	2.85	VDC	High
						1.0	mA	Maximum cur- rent

BS1

RAE-2

Point	I/O	Name	Function	Min	Nom	Max	Unit	Description / Note
J403	I/O	MBUS	Bidirectional Serial Bus	2.30	2.80	2.85	VDC	High, to the CMT
					0	0.45	VDC	Low, to the CMT
				2.1	2.80	2.85	VDC	High, from the CMT
					0	0.5	VDC	Low, from the CMT
J404	0	PWR_ONx		2.0	2.80	2.85	VDC	High
					0	0.45	VDC	Low
J430		LF_INT	Intermidiate PLL loop filter		1.2		VDC	When PLLs are locked
J434	I	X32IN			1.35		VDC	High, Sini vawe
					0		VDC	Low
J435	0	X32OUT			1.0		VDC	High
					-0.3		VDC	Low
J440		ROMCS2	RFD flash chip select	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low, chip se- lected
J441		ROMCS0	XIP1 flash chip select	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low, chip se- lected
J442		FLASHWRx	XIP and RFD flashes write	2.3	2.80	2.85	VDC	High
			enable from CPU		0	0.45	VDC	Low, write en- abled
	I		XIP and RFD flashes write	2.0	2.80	2.85	VDC	High
			enable from frame connector or testpads		0	0.8	VDC	Low, write en- abled
J443		ROMRDx	RFD flash read enable	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low, read en- abled
J444		WP	RFD flash write protect	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low, write pro- tected
J445		ROMCS1	XIP2 flash chip select	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low
J446		RASx	DRAM row address strobe	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low
J447		MWEx	DRAM write enable	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low
J448		CASL1x	DRAM upper column address select	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low
J449		CASL0x	DRAM lower column address select	2.3	2.80	2.85	VDC	High
			301001		0	0.45	VDC	Low
J450		FLASH_CTRL2	RFD flash status	2.4	2.80	2.85	VDC	High
					0	0.4	VDC	Low

Table 16. Testpoints (continued)

Point	I/O	Name	Function	Min	Nom	Мах	Unit	Description / Note
J451		STS1	XIP1 flash status	2.4	2.80	2.85	VDC	High
					0	0.4	VDC	Low
J452		STS2	XIP2 flash status	2.4	2.80	2.85	VDC	High
					0	0.4	VDC	Low
J453		SD1	System data bus line 1	2.3	2.80	2.85	VDC	High, data to memory
					0	0.45	VDC	Low, data to memory
				2.4	2.8	2.85	VDC	High, data to CPU
					0	0.4	VDC	Low, data to CPU
J454		SA4	System address bus line 4	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low
J455		D0	Memory data bus line 0	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low
J456		MA3	Memory address bus line 3	2.3	2.80	2.85	VDC	High
					0	0.45	VDC	Low
J497		VCOMP1		1.24		1.285	VDC	
J498		CS3x	Phaser chip select	2.3	2.80	2.85	VDC	High
					0	0.4	VDC	Low, chip se- lected
J499		RESETx	Reset from Phaser to CPU	2.5	2.80	2.85	VDC	High
			and flash memories		0	0.5	VDC	Low
J801	0	GENSDIO	CMT LCD and CCONT serial	2.0	2.80	2.85	VDC	High
			data		0	0.5	VDC	Low
J803	I/O	LCDCD	CMT LCD command / data select	2.0	2.80	2.85	VDC	High, data
			Select		0	0.6	VDC	Low, command
J804	I/O	LCDCSx	CMT LCD chip select	2.1	2.80	2.85	VDC	High
					0	0.5	VDC	Low, chip se- lected
J808	0	SCK	PDA LCD data clock	2.3	2.80	2.85	VDC	High
J854		BZR_IF	Buzzer signal	2.0	2.80	2.85	VDC	High
					0	0.6	VDC	Low
J880		HFENA	Handsfree earpiece enable	2.3	2.80	2.85	VDC	High, HF ampli- fied enabled
					0	0.45	VDC	Low, HF ampli- fied disabled
J881	0	XEAR	Audio output for handsfree use			2.0	Vpp	

Table 16. Testpoints (continued)

RAE-2

BS1